

PHENIX Experiment at BHIG: Quarkonium Measurement Capabilities

Marzia Rosati Iowa State University

5/13/98

INT workshop

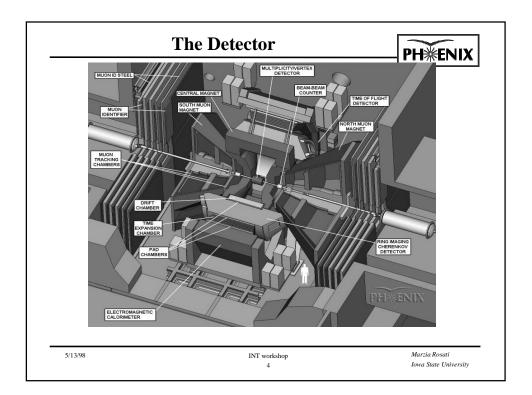
Marzia Rosati Iowa State University

Outline

- PHENIX Detector
 - **★**Centrality Measurement
 - **★**Electron Measurement
 - **★**Muon Measurement
- Vector Meson Measurement
- Dilepton Spectra
- Expected Rates
- Conclusions

5/13/98

INT workshop

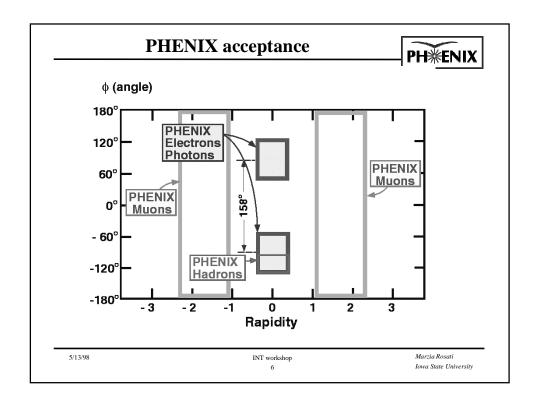

Pioneering High Energy Nuclear Interaction eXperiment

C 1.	M-CIUTI-ii-	D	Toint In ditate for Noveless Description
Canada	McGill University	Russia	Joint Institute for Nuclear Research
China	China Institute of Atomic Energy	Russia	Kurchatov Institute of Atomic Energy
China	Institute of High Energy Physics - Beijing	Russia	Petersburg Nuclear Physics Institute
China	Peking University	Russia	St. Petersburg State Technical University
Germany	University of Muenster	Sweden	Lund University
India	Banaras Hindu University	USA-AL	University of Alabama, Huntsville
India	Bhabha Atomic Research Centre	USA-CA	Lawrence Livermore National Laboratory
Israel	Weizmann Institute	USA-CA	University of California at Riverside
Japan	Center for Nuclear Study-U.Tokyo	USA-FL	Florida State University
Japan	Hiroshima University	USA-GA	Georgia State University
Japan	KEK, High Energy Accelerator Research Org.	USA-IA	Iowa State University / Ames Laboratory
Japan	Kyoto University	USA-LA	Louisiana State University
Japan	Nagasaki Institute of Applied Science	USA-NM	Los Alamos National Laboratory
Japan	RIKEN, Insitute of Physical and Chemical Research	USA-NM	New Mexico State University
Japan	Tokyo Institute of Technology	USA-NM	University of New Mexico
Japan	University of Tokyo (Physics Department)	USA-NY	Brookhaven National Laboratory
Japan	University of Tsukuba	USA-NY	Columbia University / Nevis Laboratory
Japan	Waseda University	USA-NY	State Univ. of New York at Stony Brook
Korea	Korea University	USA-TN	Oak Ridge National Laboratory
Korea	Yonsei University	USA-TN	University of Tennessee
Russia	Institute of High Energy Physics - Protvino	USA-TN	Vanderbilt University

(445) Collaborators in 10 Countries (44 Institutions)

5/13/98 INT workshop Maria Rosati
3 Iowa State University

PHENIX Physics Philosophy

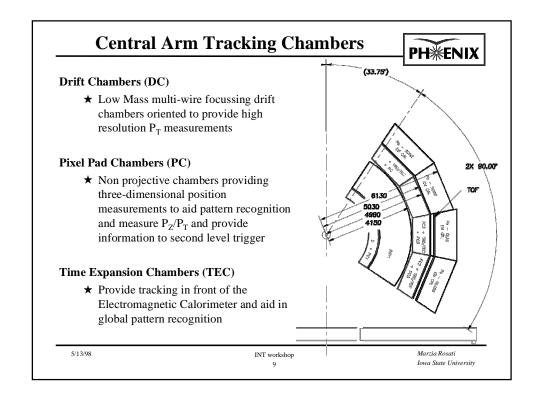


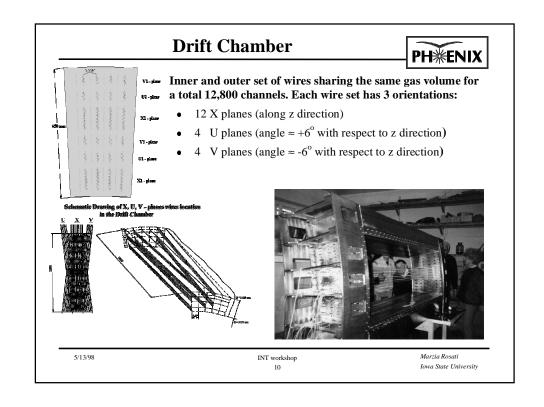
Seeing QGP will require correlation of many measurements:

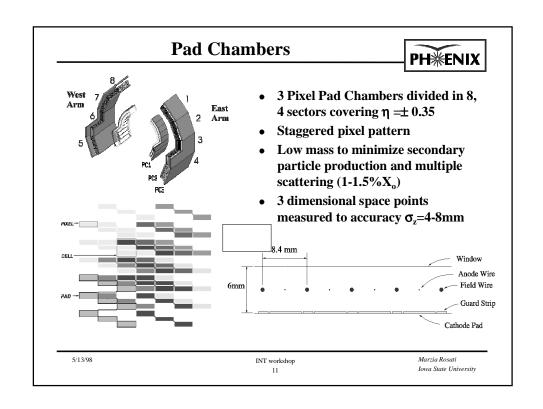
- Global event information
 - ★ Multiplicity, E_T , fluctuations, $\langle p_T \rangle$
- Deconfinement
 - ★ Differential suppression of ψ' , J/ ψ with respect to Υ
 - ★ J/\psi production relative to Drell-Yan, open charm production
- Thermal History, Degrees of Freedom
 - ★ Direct γ , direct $\gamma^* \rightarrow e^+e^-$, $\mu^+\mu^-$
- Chiral symmetry restoration
 - \bigstar Mass, width and branching ratio of $\phi \rightarrow e^+e^-, K^+K^-$
- Space-time evolution
 - ★ HBT correlation of $\pi\pi$, KK
- Strangeness and Charm
 - \bigstar K[±], K⁰, ϕ , J/ ψ , D production

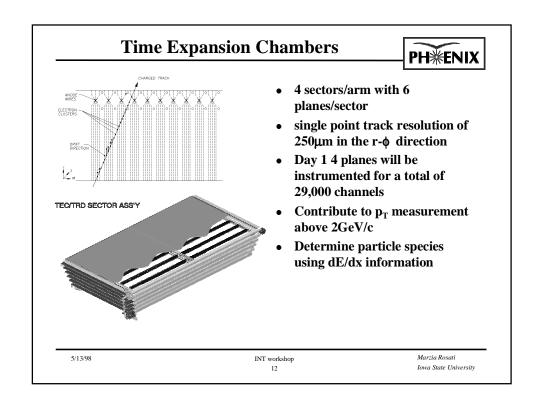
5/13/98

INT workshop

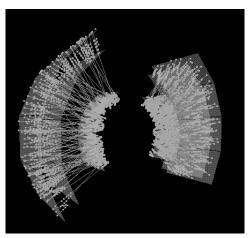

PHENIX Centrality Measurement




- PHENIX will have several measurements of centrality and each of them will have different systematics:
- 1) Charged particle multiplicity using MVD in the
- pseudorapidity range $-2.5 < \eta < 2.5$
- 2) Transverse Energy measured in the Electromagnetic
- Calorimeter in the Central Arm which is $dE_T/d\eta$ at y=0
- 3) Charged Particle Multiplicity as measured by the
- Central Arm tracking chambers and mean p_T.
- 4) Zero degree Calorimeter to be installed at all collision
- points


5/13/98 INT workshop Marzia Rosati
7 Iowa State University

Multiplicity/Vertex Detector PH*ENIX Wide coverage $|\eta|$ <2,5 2 coaxial barrels, 200 µm wide silicon strip/pad 2 "end plates" of Si pads minimal radiation thickness 1200 400 400 input 2mm 3D vertex accuracy · calculation Nch, dNch/dη Hijet central Au+Au sensitive to 10% fluctuations in Nch in 0.2 unit η rapidity bin ò η 5/13/98 Marzia Rosati INT workshop Iowa State University

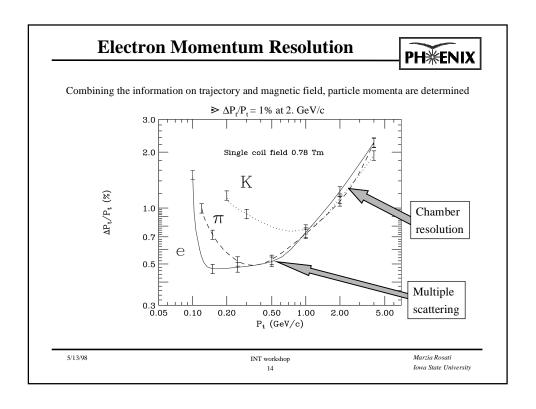


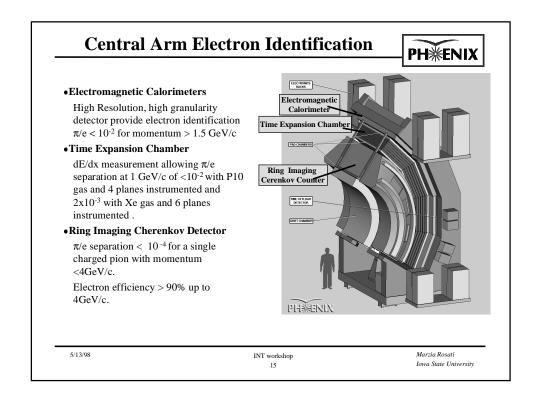
Tracking Detector Performance

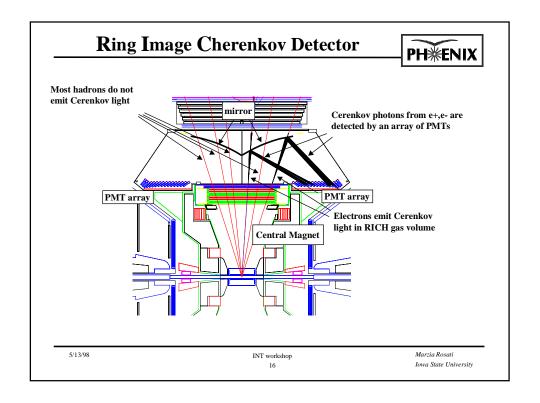
Drift Chamber

- ★ position resolution of 150 μm in r-φ and 2 mm in z
- ★ 2 track separation is 1.5 mm

Pixel Pad Chamber


★ 3-d space point with accuracy of 3-8mm (PC1-3)


Time Expansion Chamber


- single point track resolution of 200-250μm in the r-φ direction
- ★ 2track separation of 5mm for tracks normal to the detector

Using DC, PC and TEC, the trajectory can be reconstructed.for all charged particles within the Central Arm acceptance

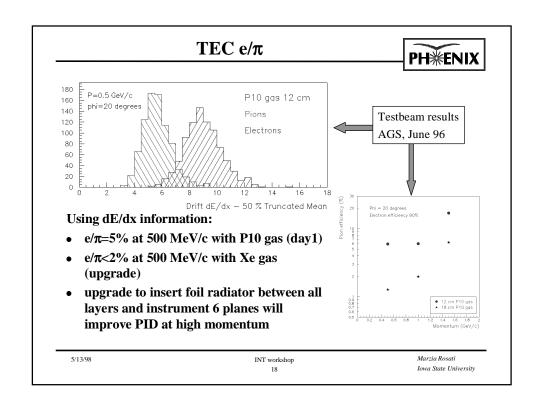
5/13/98 INT workshop Marzia Rosati
13 Iowa State University

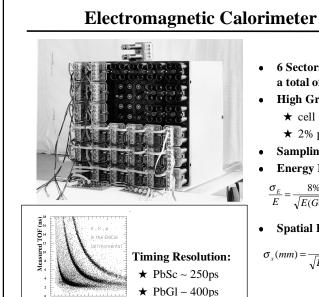
RICH

- **Construction Status:**
- Two gas vessels has been constructed at FSU, and they are now at \ensuremath{BNL}
- All of 2560 PMTs has been installed in the first vessel
- GeV/c

 ★ Pion rejection factor:

 > 10³ for a single charged pion with momentum less


★ Electron identification efficiency ~100% for a single electron with momentum less than ~ 4


★ Ring angular resolution:

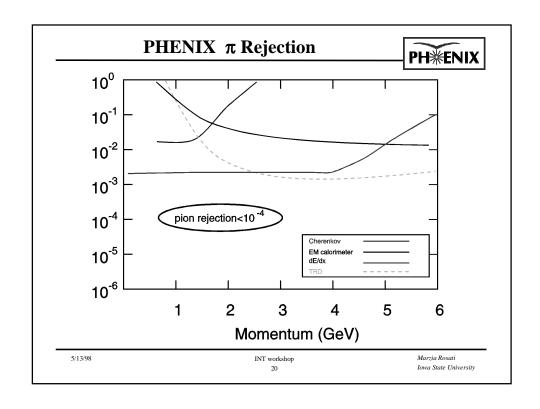
than $\sim 4 \text{ GeV/c}$

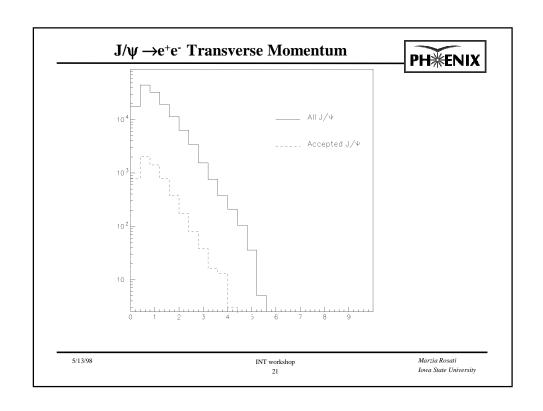
~ 1 degree in both θ and ϕ

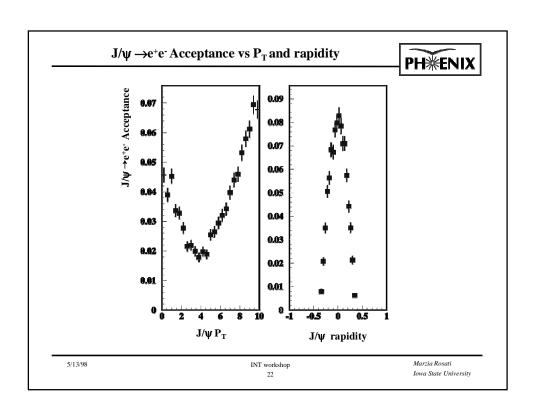
5/13/98 INT workshop Marzia Rosati 17 Iowa State University

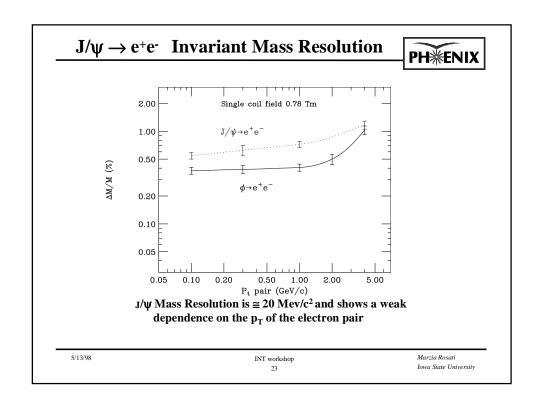
- 6 Sectors PbSc, 2 Sectors PbGl for a total of 28,224 channels
- **High Granularity**
 - \bigstar cell size 5x5x37,4x4x40 cm³
 - ★ 2% primary particle occupancy
- Sampling fraction 20%,100%
- **Energy Resolution**

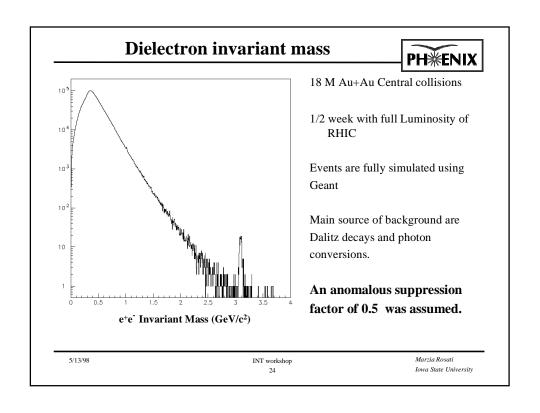
$$\frac{\sigma_E}{E} = \frac{8\%}{\sqrt{E(GeV)}} \oplus 1.5 \qquad , \qquad \frac{5.8\%}{\sqrt{E(GeV)}} \oplus 1.$$

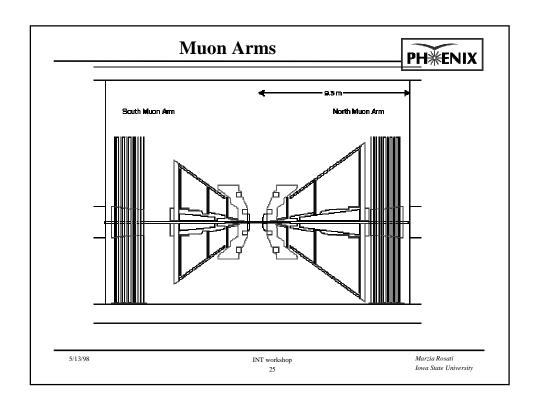

• Spatial Resolution


$$\sigma_x(mm) = \frac{10.}{\sqrt{E(GeV)}}$$
, $\frac{5.}{\sqrt{E(GeV)}} \oplus 1.$

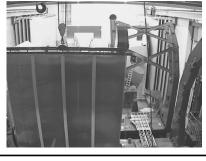

INT workshop


Marzia Rosati


Iowa State University

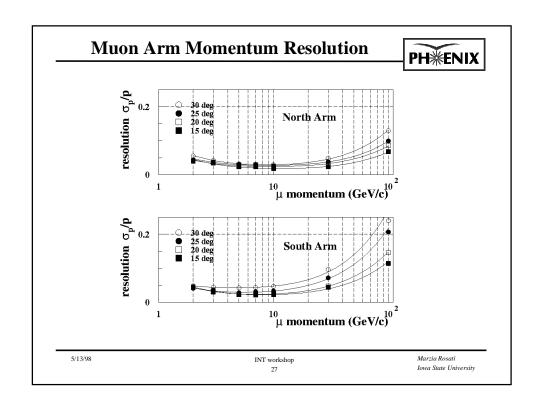


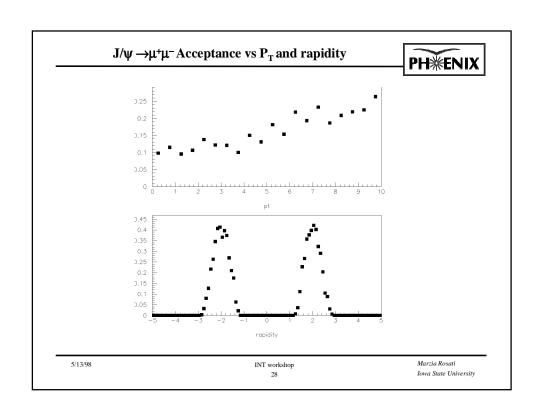
Muon Tracking and Muon ID Detectors

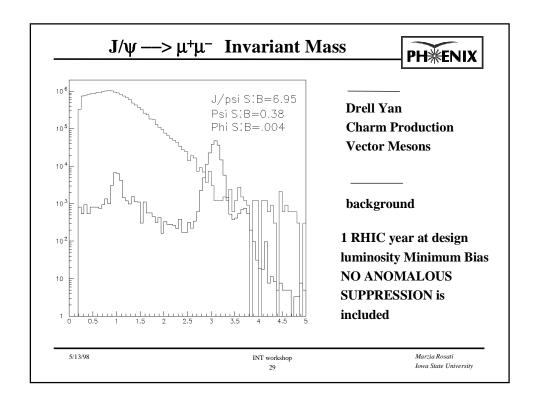

Muon Tracking

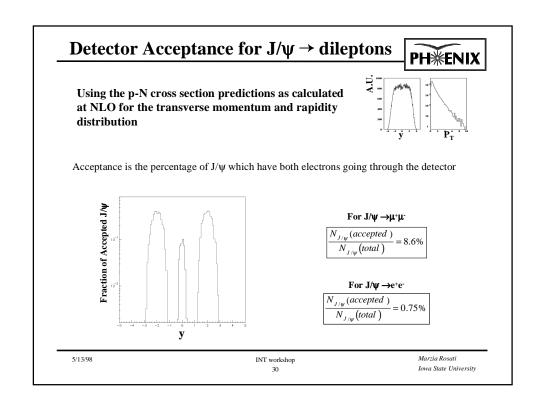
3 stations of 3 cathode strip chambers (CSC)

- one fine cathode plane, $\sigma \sim 100 \, \mu \text{m}$
- one coarse cathode plane at a stereo angle of 22.5 degrees
- anode plane which is perpendicular to the fine cathode plane


Muon ID


- 6 walls of steel absorber interleaved with layers of Iarocci proportional tubes
- Low energy muon threshold of ~2.2 GeV
- $\pi/\mu \sim 10^{-4}$
- First panel installed a week ago!

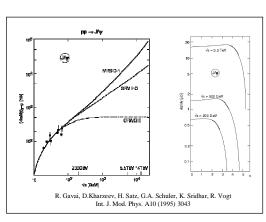



5/13/98

INT workshop 26

J/ψ Invariant Mass Resolution and Acceptances

Particle	Mass Resolution (MeV/c²)	Acceptance (%)
J/ψ→μμ	105	8.6
ψ'→μμ	105	8.6
<i>Υ</i> →μμ	180	8.3
ψ→ee	20	0.75
ψ' →ee	20	0.75


INT workshop

31

Marzia Rosati Iowa State University

J/ψ Cross Section in pN Collisions

Next to leading calculations predict the J/ψ cross section as shown in this figure using an overall normalization factor:

$$\left(\frac{d\sigma_{pN\to J/\psi}}{dy}\right)_{y=0} = 2.5 \times 10^{-2} \left(\frac{d\sigma_{c\bar{c}NLO}}{dy}\right)_{y=1}$$

The agreement with existing data is quite good (CDF at igh p_T) and the prediction at RHIC energies is:

$$\left(\frac{d\sigma_{pN\to J/\psi}}{dy}\right)_{y=0} = (5.9 - 6.3) \times 10^{-1} \,\mu b$$

Knowing BR($\psi \rightarrow e^+e^-, \mu^+\mu^-$)= 6.0%

$$\left(\frac{d\sigma_{pN\to J/\psi}}{dy}\right)_{y=0}BR(J\to ee,\mu\mu) = (35-38)nb \qquad \sigma_{pN\to J/\psi} \qquad BR(J\to ee,\mu\mu) = (185-200)nb$$

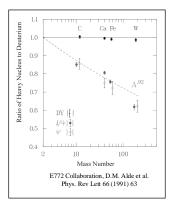
5/13/98

5/13/98

INT workshop

A-dependence of J/ψ Cross Section

 J/ψ Cross Section in proton-Nucleus collision shows a nuclear dependence which can be parameterized


as:

$$\sigma_{AA\to J/\psi} = A^{2\alpha} \sigma_{pN\to J/\psi}$$

with $\alpha = 0.92$ (shown in figure)

Assuming there is <u>no new physics</u> in AA collision we can estimate J/ψ Cross Section in Au-Au collisions at RHIC energies is estimated as:

$$\sigma_{AA \to J/\psi} BR(J/\psi \to ee, \mu\mu) = 3.3mb$$

5/13/98

INT workshop

Marzia Rosati Iowa State University

Estimate of J/\psi Integrated Yield in one Year of RHIC

Assuming there is no anomalous J/ψ suppression we can calculate an upper limit to the J/ψ Integrated Yield.

We estimate one year of running for 8 months corresponds to 10^7 seconds, to account for detector and accelerator down time(50%). Using the RHIC design luminosity $L=2x\ 10^{26}\ cm^{-2}\ s^{-1}$. Then the total number of J/ψ produced is:

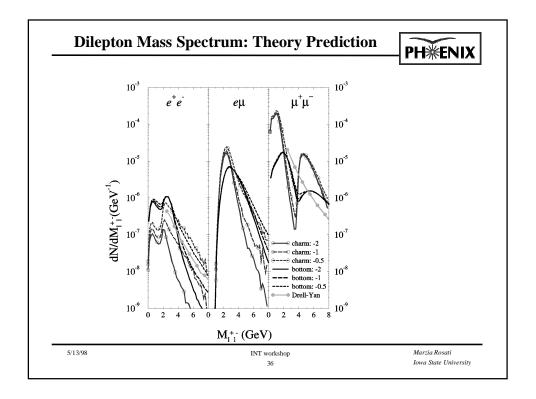
$$N_{J/\psi}(total) = 6.3 \times 10^6 events$$

Within the PHENIX acceptance we have:

Particle	Dimuon Decay	Dielectron Decay
J/ψ	530k	53K
ψ'	9k	0.9k
Y	0.8k	

5/13/98

NT workshop


Conclusions

- Within one year of RHIC running at full luminosity we will have data sample of size comparable to NA50 for J/ψ
- PHENIX has capabilities of measuring several charmonium states
- RHIC will allow pp, pA, AA collisions therefore we will be able to make a systematic study of charmonium and bottonomium production providing STRINGENT CONSTRAINTS on production/suppression theoretical models.

We need input from the theorists!!!!

5/13/98 INT workshop Marzia Rosati
35 Iowa State University

